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Abstract. The Clebsch-Gordan (CG)  coefficients of the permutation groups S(2)-S(6) are 
calculated by using the eigenfunction method. Phases have been chosen in a consistent 
way to exhibit as many symmetries for the coefficients as is possible, including non- 
multiplicity free cases. The CG coefficients of S(2)-S(5) and those for [321]x[321]+ [321]’ 
of S(6) are tabulated in the square root form of rationals. These tables together with the 
S(6) 2 S ( 5 )  isoscalar factors published earlier provide a complete tabulation of the S(2)-S(6) 
CG coefficients given in the Young-Yamanouchi basis. 

1. Introduction 

The Clebsch-Gordan coefficients of the permutation group are useful in many areas. 
The first application stems from its very definition (Hamermesh 1962), i.e. it is an 
element of a matrix which transforms the coupled space labelled by two irreducible 
bases ( I R B )  of S ( f )  into a direct sum of irreducible spaces of S(f). The next comes 
from the fact that the CG coefficients of the permutation group are related to the indirect 
coupling coefficients for the SU(mn) 2 SU(m) x SU(n) I R B  (Chen et a1 1978, 1984a). 
Consequently, the CG coefficients of permutation groups are closely related to the 
SU(mn)  3 SU(m) xSU(n)  coefficients of fractional parentage (CFP) (Chen 1981, Har- 
vey 1981, Obukhousky et a1 1982), once the CG coefficients of permutation groups are 
known, the SU( m n )  3 SU( m )  x SU( n )  CFP can easily be calculated. Recently, it has 
been recognised that the CG coefficients of permutation groups are also related to the 
indirect coupling coefficients which couple the IRB of the graded unitary groups U( m/  n )  
and U ( p / q )  into the I R B  of U ( ( m p + n q ) / ( m q + n p ) )  (Chen et a1 1983a). 

Vanagas (1972) showed that the ordinary tensor algebra can be extended to the 
permutation group. The one- and two-body operators can be expressed in terms of 
the irreducible tensors of the permutation group. The full Racah technique can then 
be exploited for evaluating the matrix elements of the operators, using the host of the 
CG coefficients, Racah coefficients, etc of the permutation group. Sullivan (1972) has 
considered a similar problem involving only the two point partition label of the 
permutation group. 

In recent years, there have been many papers devoted to the CG coefficients of 
compact groups, for which the reader is referred to a review article by Chen et a1 
(1985). The first systematic study of the permutation group CG coefficient is due to 
Hamermesh (1962). He introduced the K matrix, now known as the S ( f )  3 S ( f -  1)  
isoscalar factor ( ISF)  (Chen et a1 1983c), set up a recursive formula for the K matrix 
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and calculated the CG coefficients for the Kronecker product [311] x[311] of the 
permutation group S ( 5 ) .  Vanagas (1972) studied the CG coefficient for the product 
[f- 1, 11 x [ f -  1, 11, the only case which is multiplicity free for a general S(f) and for 
which an algebraic expression of the S ( f )  2 S ( f -  1 )  ISF is possible. However, due to 
the fact that the order of the permutation group S ( f )  increases drastically with J ;  the 
systematic calculation of the permutation group CG coefficients remains a challenging 
problem. In 1977, two new methods were proposed for computing the CG coefficients. 
The first one is due to Schindler and Mirman (1977a, b) which is based on the 
recognition that the columns of the projection matrix are the unnormalised CG vectors, 
while the second one is due to Chen et a1 (1977) which is based on the fact that the 
CG vectors of S ( j )  are the simultaneous eigenvectors of the two-cycle class operators 
of S ( f ) ,  S ( f -  l ) ,  . . . and S ( 2 ) .  Later, it was shown (Chen and Gao 1982) that the CG 

vectors of S ( f )  can be much more easily obtained by diagonalising a single matrix 
instead of diagonalising simultaneously the (f- 1 ) representation matrices of theFe 
(f- 1) two-cycle class operators in the Kronecker product space, the former being a 
suitable linear combination of the latter. Furthermore, with the known CG series for 
the permutation groups (Itzykson and Nauenberg 1966), the eigenvalues of the matrix 
can be known beforehand and thus the problem of diagonalising the matrix is reduced 
to that of solving a set of homogeneous linear equations, which is almost trivial with 
the help of a computer. Therefore, the formidable problem of computing the CG 

coefficients of higher-order permutation groups becomes relatively easy. Saharasbudhe 
et af (1981) also proposed a non-genealogical method for calculating the permutation 
group CG coefficients. 

Butler and Wybourne (1976a, b) used a quite different approach to the CG coefficient 
problem of compact groups. The distinguishing feature oftheir method is that it requires 
only a knowledge of character theory and is particularly useful for groups with 
irreducible representations (irreps) of large dimensions. This method has been applied 
to the point groups (Butler 1981) and unitary groups (Bickerstaff et af 1982), but not 
yet to the permutation groups. 

Two sets of tables of CG coefficients for the permutation groups S(2)-S(6) have 
been produced. One is computed by a program in Fortran (Schindler and Mirman 
1978). Only the CG coefficients for the so-called working triplets of irreps are calculated 
and listed in the floating point form with 16 decimal places. The bulk of the table is 
kept in the AIP Document No PAPS JMAPA-18-1697-84, whereas only a very small 
part, i.e. the CG coefficients for S(2)-S(5), is published in Schindler and Mirman 
(1977b). The other is computed by a program in Algol-60 based on the eigenfunction 
method (Chen and Gao 1982). All the CG coefficients of S(2)-S(6), except those for 
[321]X[321]+[321]5, along with the program are published in a book (Chen and Gao 
1981). All the coefficients are listed in square root form of rationals which makes the 
table much more attractive than the Schindler and Mirman table. 

It is well known that the CG coefficients can only be determined up to a unitary 
transformation in the multiplicity label (Derome 1966, Butler 1975). It was pointed 
out that the symmetry imposition for the CG coefficient may partially, or in favourable 
cases even totally remove the ambiguity in the multiplicity separation (Chen and Gao 
1981, Chen et a1 1984b). A serious shortcoming of the Schindler and Mirman result 
is that the multiplicity separation is entirely arbitrary with the unfavourable conse- 
quences that the resulting CG coefficients fail to satisfy certain symmetries, and more 
seriously, they cannot be written as square roots of simple rationals. If they were 
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able to be put in the form of ( a / b ) ” * ,  then a and/or b may be extremely large which 
makes no sense of using the square root form for the coefficients. 

The absolute phase of the permutation group CG coefficients tabulated in Hamer- 
mesh (1962), Schindler and Mirman (1968) and Chen and Gao (1981) are all chosen 
randomly. The symmetries of the CG coefficient have been discussed by Hamermesh 
(1962), Schindler and Mirman (1977a, b), and Butler and Ford (1979). However, the 
phase factors in the symmetry relations have not been properly considered. This is 
largely due to the fact that the imposition of the symmetry between the permutation 
groups and the unitary groups and the homomorphism between U( n) and SU( n )  has 
not been given detailed attention. Sullivan (1983) and Bickerstaff (1984) examined 
the phase problem in the light of duality between the permutation group and unitary 
group as well as the simultaneity between U ( n )  and SU(n).  

More recently, a program in Fortran has been written for computing both the 
S ( f ) = S ( f - l )  ISF and the S(f) CG coefficient iteratively (Chen er al 1984b). A 
systematic phase convention is adopted for identifying simultaneously the S ( f )  1 
S( f - 1)  ISF with the U ( m n )  2 U ( m )  x U ( n )  one-particle CFP and the SU(mn) 2 

SU(mj  xSU(n))  one-particle CFP. Since the S( f )  CG coefficient can be expressed in 
terms of the ISF for S(f) 2 S(f-  I ) ,  S(f-  1) 2 S(f-2),  , . . , the absolute phase of the 
former is totally determined by that of the latter. The phase convention in Chen et a1 
(1984b) will be used in this paper. 

Summarising, although two sets of tables of CG coefficients for S(2)-S(6) exist, 
they are both imperfect. The Schindler and Mirman table suffers from the shortcomings 
that (i) the CG coefficients are lacking in certain symmetries and are in decimal form, 
(ii) the table is in a too compact form to be used conveniently and (iii) the absolute 
phase of the CG coefficient is arbitrary. While the Chen and Gao table, although free 
from the above shortcomings ( i )  and (ii), is still hampered by the shortcoming (iii). 
Furthermore, it missed one important case, i.e. the CG coefficients for [321] x[321]+ 
[321]’, which has the highest multiplicity five for the S(6) CG coefficients and is the 
first interesting case for the permutation group for discussing the non-simple phase 
representation (Derome 1966, Butler 1975). Barring all these shortcomings, both tables 
are of rather limited circulation and remain inaccessible for many interested readers. 
Consequently we feel that it is still worth publishing the CG coefficients table for 
S(2)-S(6) with consistent phase and as many as possible symmetries and with square 
root form entries. For the sake of space, in this paper we only publish the CG coefficients 
for S(2)-S(5) and for [321]X[321]+[321Js of S(6). By using equation (2.3) given 
below, the remaining CG coefficients of S(6) are easily obtainable from the S ( 5 )  CG 

coefficients and the S(6) =I S(5) ISF tabulated in Chen et a1 (1984b). 

2. The eigenfunction method 

There are two versions of the eigenfunction inethod for calculating the CG coefficient 
of permutation groups, one is non-genealogical and the other is genealogical. 

2.1. The non-genealogical method 

According to Chen and Gao (1982), the CG coefficients for the first component, i.e. 
the one with the maximum Yamanouchi symbol (Hamermesh 1962), of the irrep v of 
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S ( f ) ,  3 SfS 6, can be found from the following eigenequation (equation (68) in Chen 
and Gao 1982) 

(2 . la)  ( .)B,m = I [(+)(mi milBIm, m2)(+) - A S m l m ; S m 2 m i I c o m , , p m 2  = O ,  
m1m2 

(2.lb) 

where lml m2)(+)  are the basis vectors for the Kronecker product [a] x [ p ] ,  which belong 
to the eigenspace of the transposition C2 = (12) with the eigenvalue equal to +1, or 
equivalently with DE:,,,,( 12)Dkjm2( 12) = + 1, CEiy:,”z are the CG coefficients, P = 
1, 2, . . . , (upv)  is the multiplicity label. From the secular equation of (2 . la) ,  we can 
determine the eigenvalues A ,  which have a one to one correspondence with the maximum 
Yamanouchi symbols of each irrep, along with their degeneracies which determine the 
CG series coefficients ( a p v ) .  Conversely, if the CG series of S(f) tabulated by Itzykson 
and Nauenberg (1966) is used, then both the eigenvalues A and their degeneracies 
( a p v )  can be known beforehand without solving the secular equation. With known 
eigenvalues A, the linear homogeneous algebraic equation (2.1 a )  can be easily 
solved. 

From ( 2 . 1 ~ )  we can get ( u p v )  CG vectors for the first component of the irrep v. 
The CG vectors for the other components can be calculated successively through the 
use of the formula 

c2fS2 = (~%A(pt))- l  (Dg)mi(pg)Dk$,2(pt) 
mlm2 

- o‘,A ( P I  6 fi m I 8 fi2 m 2 )  C ! 2 7 ; r m 2  (2.2) 

where D$A(p,) etc, are the Yamanouchi matrix elements of the transposition p ,  = 
( i  - 1, i)  which is properly chosen such that 

This method is very straightforward. The computer program based on ( 2 . 1 ~ )  is 
very short and the calculation can be carried out on a personal computer. The highest 
order of the linear homogeneous algebraic equation ( 2 . 1 ~ )  for S ( f )  w i t h f s  6, is equal 
to i(16 X 16) = 128, corresponding to the Kronecker product [321] x[321] of S(6). 

It should be emphasised that in this method, only the matrices of the (i) transposi- 
tions of S ( f )  are required. The total number of the Yamanouchi matrix elements for 
the transpositions of S(6) is equal to 

p , )  # 0. 

N,=(~) [2 (52+92+10’+52)+162]=  1 1  070, 

where 5, 9, 10, 5 and 16 are the dimensions of the irreps [51], [42], [411], [33], and 
[321], respectively. In contrast, in the Schindler and Mirman method, all the matrices 
of the f !  permutations of S ( f )  are required. The total number of the Yamanouchi 
matrix elements for S(6) is equal to 

N2=(6!)2=518400. 

From the fact that Ni l  N2 = 2%, and considering that the Yamanouchi matrices for 
the transpositions are the easiest ones to obtain, we conclude that the labour involved 
in the calculation of the matrix elements in the eigenfunction method is less than 1 Yo 
of that in the Schindler and Mirman method. 
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2.2. The genealogical method 

The S(f) CG coefficient can be factorised into the S ( f )  3 S(f- 1) ISF Ckif$jP’ anu 
the S(f- 1)  CG coefficient CF,],p(;z~’m;, 

(2.3) 

The relation between the quantum numbers of S(f) and S(f-1) are related by the 
branching rule 

The S(f) 3 S ( f -  1) ISF satisfies an eigenequation (see equation (2.2) in Chen et al 
1984b). 

Equation (2.3) shows that if the S(f -  1)  CG coefficient and the S(f) 3 S ( f -  1) ISF 

are known, it is trivial to construct the S(f)  CG coefficient. 
A detailed account of the method for constructing iteratively the S ( f )  2 S(f -  1)  

ISF and S(f) CG coefficient is given in Chen et a1 (1984b) and will not be repeated 
here. The advantage of this method is that the order of the eigenequation satisfied by 
the S ( f )  3 S(f-  1 )  ISF is much lower than that of the eigenequation satisfied by the 
S(f) CG coefficient. For instance, for the permutation group S(6), the maximum value 
for the former is only 1 1 ,  whereas the maximum value for the latter is 128. Therefore 
the eigenequation for the ISF can be easily solved, and the CG series, CG coefficients 
and ISF can all be obtained in one stroke. The disadvantage of this method is that the 
programming is more involved. 

3. The phase convention and symmetries 

A consistent phase choice is made for the S(f) 2 S(f-  1 )  ISF in Chen er a1 (1984b) to 
ensure the simultaneity for the U( mn)  2 U( m )  x U( n) ISF and SU( mn) 3 SU( m )  x 
SU(n) ISF (Bickerstaff 1984), which in turn totally fixes the absolute phase of the S(f) 
CG coefficient to the following effect. 

For given irreps a and I.L with the dimensions h,  and h,, respectively, the product 
basis vectors 

Im,mz) = lGl,4G2) (3.1) 
are arranged in the ordering of ( 1  l ) ,  (12), . . . , ( lh , ) ,  (21), (22), . . . , (huh,), whereas 
the basis vectors lm,) or Imz) are arranged in decreasing page order of the corresponding 
Yamanouchi symbols (Hamermesh 1962). Define a CG vector x [ ” I P  whose (m,m,)th 
component is 

(3.2a) 

Then the absolute phase of the CG coefficients is determined by demanding the first 
non-vanishing component of the CG vector x [ ” ’ ~  be real positive, namely 

( * . [ V I P  . ] A m  
)m,m2 = c i m , , p m , .  

(3.2b) 

where (mlm2) means taking m,  as small as possible followed by taking m2 as small 
as possible for which the CG coefficient Ck’y;Lm, is non-zero. 
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There are two types of symmetries for the permutation group CG coefficient. One 
is the interchange symmetry and the other is the conjugation (or tilde) symmetry. The 
interchange symmetry for the 3J (or 3Jm) symbols of an arbitrary compact group has 
been studied by Derome (1966) and Butler (1975). The symmetries of the permutation 
group CG coefficient have been discussed by Hamermesh (1962), Schindler and Mirman 
(1977b), Butler and Ford ( 1979), Chen and Gao (198 1) .  

For simplicity, we use the provisional notation(ab 1 c), for the CG coefficient 

C$L:;?m,, ( a b  I c)B ,  

with a = v I  m, b = v2m2 and c = v3m3. There are two independent transposition 
operators r12 and r23, 

r iz (ab I c ) p  = (ba I c ) ~ ,  rz,(ablc)p = ( a c l b ) p ,  (3.3a) 

and two conjugation operators gI2 and %23, 

%,,(ab I c ) p  = (661 CID, % 2 3 ( a b l ~ ) p  = ( U L / E ) ~ .  (3.3b) 

Notice that here 1, 2 and 3 always refer to the positions numbered as in C>~;,,,,,, 
rather than to the indices a, b and c, respectively. Hence r 1 2 ( b c  I a )  = (cb I a ) ,  and 
~ 2 3 (  cb I a )  = (ca I b ) .  The transpositions 7r12 and ~ 2 3  generate the permutation group 
Y(3),  while the conjugation operators (el2 and %23 generate the four-group V =  
( e ,  TI2,  %23, % 1 3 ) .  It is easily seen that 

[r,,, %,I = 0, for ij= 12,23, 13, (3.3c) 

whereas 

[TI*, % 2 3 1 #  0, [ r 1 2 ,  V I 3 1  # 0. (3 .36)  

( 3 . 3 ~ )  and (3.3d) show that the interchange and tilde symmetries in general do not 
commute, but those referring to the same pair of indices do  commute. 

Corresponding to the symmetries of the S ( f )  =I S ( f -  1)  ISF given by (4.4), (4.5) 
and (4.6) in Chen er a1 (1984b), the CG coefficient of S ( f )  has the following symmetries. 

( 1 )  

c ~ ~ ~ ; ~ m 2  = (p4( up vp ) A i  I A c$,f:?+, 

= CP6(apvp)A%,A~C,ml. ,m2,  [;]/A$- 

(3.4a) 

(3.46) 

(3.4c) 

[SIP ,6  = CP 5 (up vp ) A I A L C&fi I , p m 2  

where A; etc, are the sign factors defined by Hamermesh (1962). The phase factors 
cp,(upvp) are dictated by the phase convention (3.2b). They can be expressed as 

(3.5a) 

(3.5c) 

(3.56) 

where (mlA2)  means first taking m, as large as possible and then taking m, as large 
as possible, whereas ( f i l m 2 )  means first taking m, as large as possible and then taking 
m2 as small as possible. The meaning of ( m l  m2) is opposite to that of ( A l  m2). 

Notice that for non-multiplicity free cases, ( 3 . 4 ~ )  ((3.46) or ( 3 . 4 ~ ) )  in general only 
holds when the partitions [ U ]  and [ p ]  ( [ U ]  and [v], or [ p ]  and [v]) are not self-conjugate 
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simultaneously. If both are self-conjugate (for S ( f )  with f G 7 ,  then they must be 
equal), the imposition of the symmetry 

C L m  v l p ~ m  .um2 = mi  A",C["]psm- u m l . u m 2 ~  for[a]=[&]#[v],  (3.4d) 

or 

c:$rm2 = *A;& cg?$,,, for[v]=[ir]#[a], (3.4d') 

will be of help for the multiplicity separation. 

A E ,  = ( - 1 ) "', 
The sign factor A; can be factorised as (Butler and Ford 1979) 

A: = AZ'Akj, (3.6) 

where nf is the number of squares below the square labelled with f in the Young 
tableau Y ;  of S ( f ) .  The phase factors .z4-c6 for the symmetry relation of S(f)  3 S(f- 1 )  
(see equation (4.4) in Chen et a1 1984b) can be expressed as 

~4 = A 

~5 = A 

: ' ( ~ 4 (  UP vp ) P~(U'P ' vb-1, 

E ,  (CS ( UP vp ) (C 5 ( a ' p  ' v a ) ,  (3.7) 

E 6  = hE,h :'(p6( Up U p )  (C6( U'p' V&,). 

It must be pointed out that the relation (4.7) in Chen et a1 (1984b) for c4-c6 should 
be corrected by the above equation (3.7). 

[vlp.m 

(2) For a # p, 

( 3 . 8 ~ )  

(3.86) 

where ( m 2 ~ , )  means that we first take m, as small as possible and then take m, as 
small as possible. 

For a = p, 

C L 2 y : z m 2  = ( ~ 7  ( UCL vp c @m2, u m  I 9 

( c ~ ( u c L ~ ~ )  = sign( c E $ : ; m 2 l (  m 2 ~ , ) ) 3  

( 3 . 8 ~ )  

The irrep [ V I P  is said to belong to the symmetric product [a x pIs for S,, = +1, or 
antisymmetric product [a x p], for S,, = - 1. 

C L m 1 : u m 2  VIP m = SvpC[om2,um, .  vl@,m 

(3) For a # p # v # a  

(3.9a) 

(3.96) 

(3.9c) 

(3.9d) 
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The discussion of the 3 j  symbol symmetries by Derome (1966) can be easily carried 
over to the CG coefficient. Let 

(ab 1 c), = C~',:;$A~, P = 1,2, . . . , ((+(TU) 

be regarded as functions of a, b and c, which carry a (cTaa)-dimensional representation 
9 for the permutation group Y(3) defined by (3.3a). According to Derome (1966), 
if 9 does not contain the irrep [21], then (T is said to be a simple phase representation, 
otherwise, a non-simple phase representation. For the latter case, it is impossible to 
choose all the CG coefficients such that the effect of a permutation of m,'s is at most 
a multiplicative phase. 

The irrep [321] of S(6) is a non-simple phase representation. The five-dimensional 
representation 9 of Y(3) associated with it contains the irreps [3], [21] and [l'] twice, 
once and once, respectively (Butler 1975). Hence for [321], we may choose 

d a b  I c), = (ab  I c),, P = 1 , 2 ,  (3.10a) 

d a b  I c)p = &(ab I c),, P = 3 ,  (3.10b) 

d a b  I c ) ,  = c @$l(d(ab I c)a, ( 3 . 1 0 ~ )  
5 

P = 495, 
a = 4  

where 8, is the parity of the permutation T,  

Due to (3.3d), it is impossible to give simultaneously a simple structure (i.e. a 
diagonal form) to both the matrices describing the interchange and conjugate sym- 
metries. Therefore, instead of imposing the symmetries (3.10) for the irrep [321], we 
require that 

7 4 a b  1 c), = 6,(ab I c),, z12(ab  I c), =  dab I c),, (3.1 1) 

for p = 1,2 , .  . . , 5 ,  where 6, = *1 and A, = *1 (see (4.8)). 
For multiplicity free cases the symmetries (3.4)-(3.11) are satisfied automatically, 

however the phases now enter of necessity instead of being determined by phase 
convention. For non-multiplicity free cases, the symmetries (3.4d), (3.8c), (3.9d) and 
(3.1 1 )  are imposed to reduce the arbitrariness in the multiplicity separation and to get 
simpler numerical values for the CG coefficients which is crucial for the tabulation in 
square root form of rationals, while the other symmetry relations in (3.4)-(3.9) are 
used to find the CG coefficients which are not tabulated. 

Now we use [41]X[32]+[221] as an example for determining the phase factors 
(p4-(p9 from the CG coefficient table 3.2 and the A: table 5 in 9 4. 

(p4( [41][32][22 11) = sign( Ay'1A[321C[22'1' 3 [4114,[3213) = -1, 

(p5([41][32][221]) = = - 1, 

(p6([41][32][221]) = ~ign(A[,'"A[,"']CE::113~~~~~~) = - 1, 

(~,([411[321[221]) = sign(C[::j3,'13211) = -1, 

(~,([41][32][221]) = sign(C~:?{3,'[3zllj = -1. 

(P8([411[321[2211) = sign(C[::i?,\32]4) = 

4. Tables of the cc coefficients 

The CG coefficients of S(3)-S(6) have been calculated by both the non-genealogical 
and genealogical versions of the eigenfunction method and checked one against another. 
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The CG coefficients of S(3)-S(5) and those for [321] x[321]+ [321]' of S ( 6 )  are listed 
in tables 1-4, while the sign factors A; are listed in table 5 .  

( 1 )  The partitions are arranged in the order of decreasing row symmetry from top 
to bottom in the corresponding Young diagrams. We only listed the CG coefficients 
for the products [u]x[p]  where [p] is below [v] and [a] is no lower than the 
self-conjugate partition. The other CG coefficients can be found by using the symmetries 

(2) Each table (except table 4) for given a and p is divided into two subtables 
according to the eigenvalues x of the transposition (12), the upper one corresponding 
to x = + 1, while the lower one corresponding to x = - 1. 

(3) In tables 1-3.6, the second column gives the normalisation factor for each row 
vector. All the entries in tables 1-4 are the square values of the CG coefficients, with 
an asterisk denoting a negative coefficient and blank a null coefficient. 

(4) For the tables with v = p, the subscript s(a) attached to the partition [U]@ in 
the table heading indicates that the irrep [VIP belongs to the symmetric (antisymmetric) 
product. The multiplicity label is denoted by a, p, , . , , E.  

(5) Tables 4.1-4.4 only give a quarter of the whole table for [321] ~ [ 3 2 1 ] +  [321]'. 
The remaining coefficients can be found from the relation (4.8) given below. 

(6) The CG coefficients of S(6) other than those for [321] x[321]+[321]' can be 
found from the S ( 5 )  CG coefficients and S(6) 2 S(5) ISF tabulated in Chen et a1 (1984b) 
by using (2.3). 

(7) The following symmetries are to be noted for the CG coefficients under some 
special cases. 

(3.4)- (3.9). 

{; for T =  

for r = a, p 

for T = 

{; for r = 

for r = 

for T = CY, p, y 

for T = 

ff 

{ P ,  Y ,  6 
for T = 

for T = 
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N (m,m2)  

Table 1. T h e  CG coefficients of permutation groups. 

[41 3 
[3111 6 

[2211 6 
[211]1 2 

2 6 

[31 2 I I 
[21]1 2 I * 1  

1 1 1 
4 *1 * I  

* I  * I  2 *2 
2 2 1 *1 
1 * I  

2.1. [31] x[31] = [4]~+[31]~+[22]~+[2l  l]a. 

N ( 1 1 )  (21) (32) 

[3111 2 

[211]1 4 
2 4 

N 

PI13 4 
[211]2 4 

3 2 

1 1 
2 I * I  
2 *1 1 

(12) (22) (31) 

2 * I  * I  
2 1 1 

* I  1 

2.3. [22] x[22]= [4]s+[22]s+[I4]a. 
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3.1. [41] x [41] = [5]s + [41]s + [32]s+ [31 I]a. 

N 

r4111 3 
2 45 
3 45 
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( 1 1 )  (12) (14) (21) (22) (24) (31) (32) (34) (43) (45) 

1 1 1 
I5 4 * I  12 *1 12 

I5 *1 12 * I  2 6 *2 *6 

[51 4 
[41]1 12 

2 36 
3 36 

[32]1 36 
2 36 
4 6 

[311]1 2 
2 2 
4 2 

[41]4 36 
[32]3 36 

5 6 

E31113 2 
5 2 
6 2 

I I 
9 * I  

*3 *3 20 
*3 

15 1 5  4 
15 

I * I  
I 

1 1 
* I  * I  
*5 * 5  

* 5  *3 *5 10 *10 

* I  * I  
*1 15 * I  2 *2 

2 2 1 *1 

* I  
I * I  

*3 *5 *IO *3 *5 *IO 
15 * I  *2 15 * I  *2 

2 * I  2 * I  

I * I  
1 * I  

1 * I  

[3211 72 
2 144 
4 48 

[311]1 40 
2 80 
4 16 

12 20 '5 *15 *5 *I5  
24 *IO *30 *IO 20 *I5  *20 15 

*18 *10 *IO *5 5 

20 *12 3 * I  3 *I 
40 6 '2 6 *I2 *1 12 1 

*2 6 2  *3 3 

10 *2 *2 * I  1 
16 6 2 *6 * I  1 

[221]1 
3 
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N 

[41]4 45 
[32]3 144 

5 48 

[311]3 80 
5 16 
6 8 

[22 112 16 
4 16 
5 8 

3.2b. [41] x[32] = [41]+ [32]+ [3l I]+ [221]. 

(13) (15) (23) (25) (33) (35) (41) (42) (44) 

15 * I  12 *2 *6 * I  *2 *6 
24 *IO *30 *20 15 *IO *20 15 

*18 *IO 5 *IO 5 

40 6 *2 12 1 6 12 1 
*2 6 3 2 3 

* I  *3 1 3  

10 *2 1 *2 I 
6 2  1 *6 I 

3 * I  *3 I 

N 

[4111 3 
2 3 
3 3 

E3211 48 
2 48 
4 96 

[311]1 48 
2 48 
4 48 

[221]1 96 

[21']1 3 
3 48 

( 1 1 )  (12) (14) (21) (22) (24) (31) (32) (34) (43) (45) (46) 

I 1 1 

* I  * I  1 
* I  1 1 

20 '12 3 5  3 5 
20 3 *5 3 *6 6 5 

12 30 *2 * I  *I5 1 15 30 

12 20 *5 3 *5 3 
12 *5 *3 *3 IO *IO 3 

*I2 '3 5 3  10 *IO 5 

30 2 30 15 * I  *I5 1 2  
20 5 3 *5 6 *6 3 

1 * I  1 

N 

[41]4 3 
[32]3 48 

5 96 

[311]3 48 
5 48 
6 48 

[22112 96 
4 48 
5 48 

(13) (15) (16) (23) (25) (26) (33) (35) (36) (41) (42) (44) 

* I  * I  *1 
20 3 * 5  6 *5 3 6 

*2 30 1 15 *30 *2 1 15 

12 *5 *3 *IO *3 *5 'IO 
*I2 *3 5 *IO *5 3 *IO 

*I2 *20 *3 *5 3 5  

*I5 1 *2 30 *I5 I 
20 5 3  *6 *3 * 5  *6 

30 2 

20 *I2 5 '3 *5 3 

[21312 3 
3 3 
4 3 

1 * I  1 
1 * I  1 

1 * I  I 
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N 

151 5 
[41]1 30 

2 18 
3 36 

[32]1 36 
2 72 
4 24 

[311]1 4 
2 8  
4 40 

20 1 

( 1 1 )  (12) (14)  (21) (22) (24) (33) (35) (41) (42) (44) (53) (55) 

1 1 I 1 1 
4 4 4 *9 *9 
4 * I  *3 * I  *3 *3 *3 

*2 *6 *2 4 *3 *4 3 *6 *3 3 

16 *4 3 *4 3 3 3 
*8 6 *8 16 3 *I6  '3 6 3 *3 

2 2 1  * I  9 *9  

1 1 * I  * I  
2 I * I  *2 * I  1 

8 6 *8 *3 3 $6 3 *3 

3.4a. [32] x[32] = [5]s+[41]s+ [32]s+[31 l]a+[22l]s+[2l3]a. 

[221]1 2 2 1  * I  * I  1 
3 2 * I  1 2 *1 1 

[213]1 20 6 *2 *6 I * I  2 * I  1 

3.4b. [32] X [32] = [5]s+ [41]s+ [32]s+ [31 l]a + [221]s + [213]a. 

[41]4 36 
[32]3 72 

5 24 

[311]3 8 
5 40 
6 20 

[221]2 8 
4 8 
5 4 

[213]2 20 
3 I O  
4 2 

*2 *6 *4 3 *2 *4 3 3 *6 3 
*8 6 *I6  *3 *8 *I6  $3 *3 6 *3 

2 *1 2 *1 *9 *9 

2 * I  * I  1 *2 1 
8 6  3 $8 3 *3 *6 *3 

4 *3 *4 3 *3 3 

2 *1 2 * I  1 1 
2 1 1 1  2 1 

* I  I 1  * I  

6 *2 * I  *6 * I  I 2 1 
3 1  *3 *1 I * I  

1 * I  
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3.5a. [32] x [3 I I ]  = [41]+ [32]+ [3 I I ]'+ [221] + [21 )I. 

M-J Gao and J-Q Chen 

[41] 1 3 
2 60 
3 120 

[32] 1 24 
2 48 
4 48 

[311a]l 40 
2 80 
4 80 

[311p)l  60 
2 60 
4 60 

[221] 1 48 
3 48 

[213] I 120 

[41] I 3 
2 60 
3 120 

[32] 1 24 
2 48 
4 48 

[311u)l  40 
2 80 
4 80 

[311p]l 60 
2 60 
4 60 

[221] I 48 
3 48 

[213] 1 120 

I 
* I2  

16 

4 

6 

*IO 

*8 

* I  
15 

6 
*8 
IO 

(14) - 

IO 

*8 
'6 

*8 

15 
1 

*10 

*6 

6 

*IO 

*8 

* I  
*I5 

6 
8 

* I O  

I 
3 * 5  

*I2 

4 

*5 3 

*4 
16 

*16 

'1 *15 

2 

3 5 

*12 

2 

1 
3 

12 

5 

*4 
* I6 

* I  
'2 

13 

*5 

4 

3 

16 

*15 

'2 

*5 

12 

*10 

8 
*6 

*8 

*15 
1 

*IO 

*6 

*2 

I O  

'6 
I O  

12 

*6 
*30 

* I  I5 * I  15 
* I  *I5 1 15 *30 

5 3 5 3 
5 *3 * 5  3 *6 

'3 5 *3 5 
*3 * 5  3 5 *IO 
* 5  3 5 *3 *6 

12 12 
6 *6 

6 *6 *I2 

3 5 *3 * 5  *IO 
15 * I  *I5 I 2 
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3.5b. [32] x[3l  I ]  = [41]+[32]+[31 l]2+[221]+[313]. 
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[41] 4 120 
[32] 3 48 

5 48 

[311a]3 80 
5 80 
6 40 

[311P]3 60 
5 60 
6 60 

[221] 2 48 
4 48 
5 24 

[213] 2 120 
3 60 
4 3  

[41] 4 120 
[32] 3 48 

5 48 

[311a]3 80 
5 80 
6 40 

[311P]3 60 
5 60 
6 60 

[221] 2 48 
4 48 
5 24 

[213] 2 120 
3 60 
4 3  

6 

* I O  

*8 

*1 
15 

6 
*8 

10 

IO 
*8 
*6 

*8 

15 
1 

*10 

*6 

12 

5 

*I6  

16 

*2 

*4 1 5  

"3 

*4 

12 5 
1 

I O  6 
*8 

*3 6 *10 

*8 
16 8 
4 

15 * I  
*2 * I  *I5 
* I  

*5 I O  6 
8 

12 6 * I O  
3 

* I  

12 

5 

*16 

*15 *2 

'3 

4 

*5 

*3 

16 
*4 

*2 
1 

* 5  

12 
*3 

1 

i 
*5 

3 
5 
5 

*6 

*3 
*3 

*15 
*15 

15 30 *2 1 15 
3 6 I O  15 3 

5 IO *6 3 5 
*3 6 IO 5 *3 

3 * 5  *3 

12 *6 
*6 12 *6 
12 *I2  

*5 IO *6 *3 ' 5  
5 3 *5 

1 *2 *30 *I5  I 
* I  15 1 
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3.6a. [3 1 I ]  x [3 111 = [5], + [41], + [32]1+ [3 I I],+ [221 aIs + [221p], + [213], + [is],. 

M-J Gao and J-Q Chen 

[51 6 
[41] 1 6 

2 72 
3 72 

[32a ] l  12 
2 12 
4 96 

[ 3 2 p ) l  72 
2 72 
4 12 

[ 3 1 1 ] 1  4 
2 4  
4 4  

[221a]l  96 
3 12 

3 72 
[213] 1 72 

[221P]l 12 

[51 6 
[41] 1 6 

2 72 
3 72 

[32a]l  12 
2 12 
4 96 

[32P]l 72 
2 72 
4 12 

[ 3 1 1 ] 1  4 
2 4  
4 4  

[221a]l  96 
3 I2 

3 72 
[213] 1 72 

[221P]l 12 

1 
I 

20 

4 

A 

* 5  

* I  
*6 

'1 
2 

1 

10 

*I5 
3 

3 

10 

*I5 

* I  

6 
* I  

2 
I 
5 

*5 

* I  
*6 

* I  
2 

* I  

I O  

15 
*3 

1 
I 

*5 *3 
I O  

* I  
2 

*3 *5 

* I  15 
2 
1 

I 

5 *3 
*2 
* I  

2 
I O  

1 
1 

* I O  

* I  
'2 

* 5  *3 

3 5 

* I  1 5  
*2 
* I  

I 

* 5  3 
2 
1 

*2 
* I O  

*3 

I O  

1 5  

1 

6 
*I 

2 
1 
5 

3 

10 

*I5 

I 

6 
*1 
*2 
* I  
* 5  

(42) (44) (53) (55) (56 )  (63) (65) (66) 

1 1 1 
* I  * I  * I  

*3 5 *3 5 *20 
10 * I O  *5 * 3  *5 

*1 * I  4 
*2 2 I 1 

*5 3 5 *3 6 I O  6 

15 1 15 I *4 
2 '2 *1 15 * I  
1 * I  2 2 

* I  * I  
* 1  

1 * I  

*3 *5 3 5 * I O  6 *10 
'2 2 * I  

I * I  *2 
*2 2 15 * I  *I5 
* I O  10 * 3  ' 5  3 
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3.6b. [3 1 I ]  X [3 I I ]  = [5], + [41], + [32]? + [221 a],+ [221p],+ [213], + [I5],. 
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[41] 4 72 
[32a]3 12 

5 96 

[328]3 72 
5 12 

[311] 3 4 
5 4  
6 4  

[221n]2 96 
4 12 
5 12 

[221P]2 12 
4 72 
5 72 

[213] 2 72 
3 72 
4 6  

[ is]  6 

[41] 4 72 
[32a]3 12 

5 96 

[32p]3 12 
5 12 

[311] 3 4 
5 4  
6 4  

[221a]2 96 
4 12 
5 12 

[221P]2 12 
4 72 
5 72 

[213] 2 72 
3 72 
4 6  

[151 6 

*5 
* I  
*6 

'1 
2 

1 

I O  

*I5 

3 

3 

I O  

* I5  

* I  

6 
* I  

2 
I 

5 

* I O  
*2 

3 

*2 
* I  

I 

*5 

4 

*4 '15 

*20 3 
1 
1 

5 

3 
2 
I 

1 
*2 
* I  

* I O  
* 5  
* I  
*1 

3 

* I O  

*I5 

* I  

*6 
1 

*2 
* I  

* 5  

*5 
* I  
*6 

* I  
2 

* I  

I O  

15 

'3 

*IO 
*2 

3 

12 
* I  

* I  

*5 

15 

*3 

5 

3 
2 

* I  

I 
*2 

1 

*10 
5 
1 
1 

5 

3 
2 

* I  

* I  
2 

* I  

I O  
* 5  
* I  

I 

(45) (46) (51) (52) (54) (61) (62) (64) 

* I O  
2 

*3 

*2 
'1 

1 

5 

15 

*3 

5 
* I  
*6 

I 
*2 

* I  

I O  

* I5  

3 

3 * I O  3 5  
2 * I  

I O  5 *3 * I O  *6 

*I5 *2 *I5 1 
* l  *2 

1 1 
1 

* I  

6 3 5 *6 10 
* I  2 1 

I 4 

*2 * I  2 
* I  2 1 15 

I *15 4 

*5 I O  5 *3 
5 3 20 
I *1 

* I  I 
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Table 5. The sign factor for the Yamanouchi basis of S(f)t .  

~ 1 1  ~ 3 1 1  [221 PI11 [411 [321 
1 2  1 2 3  1 2  1 2 3  1 2 3 4  1 2 3 4 5  
+ -  + - +  + -  1 . - +  + - + -  + - + + -  

[3111 P211 w31 [511 
1 2 3 4 5 6  1 2 3 4 5  1 2 3 4  1 2 3 4 5  
+ - + + - -  + - - + -  + - + -  + - + - +  

~421 [4111 
1 2 3 4 5 6 7 8 9  1 2 3 4 5 6 7 8 9 1 0  
+ - + - + - + + -  + - + - + - + + - +  

~ ~~~~ 

[331 [3211 
1 2  3 4 5 1 2  3 4 5 6 7 8 9 10 I 1  12 13 14 15 16 
+ - + + -  + - + + - - + - - +  - - + + - + 

~ ~~ 

[3131 ~ 2 ~ 1  
1 2  3 4 5 6 7 8 9 10 1 2 3 4 5  
+ - + + - + - + - +  + - - + -  

[221’] w41 
1 2 3 4 5 6 7 8 9  1 2 3 4 5  
+ - - + - + - + -  + - + - +  
t The decreasing page order for the Yamanouchi symbols (ry,-, . . . r z r , )  is used. 

5. Discussion 

The present paper together with Chen et a1 (1984b) gives a complete listing of the CG 

coefficients for the permutation groups S ( 2 ) - S ( 6 ) ,  referred to as the new CG coefficient 
tables. 

Our CG coefficients differ from the Schindler and Mirman result in the following 
respects: (a) Ours have a consistent absolute phase convention while theirs do not. 
(b) Our multiplicity separation is based, whenever possible, on the imposition of the 
symmetries, while theirs is based on an ad hoc choice. (c) Our tables give the exact 
values of the coefficients instead of the approximate values with 16 decimal places. 

The new CG coefficient tables differ from the old ones (Chen and Gao 1981) merely 
in the absolute phase, except in the supplement of table 4. To reconcile the two results, 
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the absolute phases of the CG coefficients should be reversed for the following [a] x 
[ . L ] + [ V ]  in the old table 1.1-4.14 of Chen and Gao (1981). 

Table 
1.1 
2.1 
2.3 
3.1 
3.4 
3.5 
3.6 
4.1 
4.2 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
4.10 
4.1 1 
4.12 
4.13 
4.14 

[2 I ]  x [2 I ]  + [3] + [2 I ]  
[31] x[31]+ [31] 
[22] x [22]-, [22] 
[41] x [41]+ [41]+ [32]+ [3 1 I ]  

[311] x [31 I ] +  [41]+ [3 1 I ]+ [221P] 
[51] x[51]+ [51]+[42]+[41 I ]  
[51] x[42]+ [42]+[411]+[33]+[321 J 
[51] x[33]+ [321] 
[33] x[33]+ [42] 
[42] x [33]-, [33] 
[411]x[33]+[23] 
[42] x [42] + [5 11 + [41 I 1 + [321 a] + [Pi 
[42] x[41 I ] +  [3131 
[41 I ]  x[41 I ] +  [4l I ] +  [32l a]+ [321p]+ [23] 
[ 5  I ]  x [32 I ] +  [41 I ] +  [32 183 + [23] 
[33] x [321]+ [41 I ] +  [32i a]+ [321P] 
[42] ~ [ 3 2 1 ] +  [321 a ]  
[411] x [321] + [32 1 a] + [32 1 y] 

[32] x[32]+ [41]+[32]+ [213] 
[31 I ]  x [32]+ [221]+ [213] 

The CG coefficients for [321] ~ [ 3 2 1 ] +  [321] have a multiplicity five, the highest for 
the permutation group S ( 6 ) .  Without the symmetry imposition (3.1 1 )  or (4.8), the 
computer produced CG coefficients are totally unsuitable for being put in the square 
root form. After the symmetry imposition (4.8), the first three sets ( T = a, p, y )  of CG 

coefficients are fairly simple but the last two sets ( T = 8, E )  are still not simple enough 
with something like (243/3200)1’2 appearing. Then we noticed from (4.8) that these 
two sets have identical symmetries under the transposition rI2 and the tilde operation 
(el2, and any linear combination of them will not affect these symmetries. This freedom 
can be exploited to simplify the coefficients. Notice that although after the imposition 
of the symmetries (3.1 1) we cannot have the symmetry 

(5.1) c [ 3 2 1 ] +  m - ATA[3211A[321]  C[32l]T * 
[32 11tA,  ,132 I ]m2 - ml m [321]A3,b~1]m2r 

due to (3.3d), maybe we can still have the ‘broken’ symmetry 

where A(T, ml ,  m2, m )  = * l  does not only depend on T but also on m,, m2 and m. We 
tried to impose the ‘broken’ symmetry (5.2) for the 6- and Eth sets of CG coefficients 
and really got much simpler result as shown in table 4. From (4.8) it is seen that for 
the first three sets (T = a, p, y )  no such freedom exists and therefore we have got as 
many symmetries as possible. 

From the above example we see that the nature seems to be in favour of the 
symmetry. The more symmetries (including the ‘broken’ one) are imposed, the more 
simple coefficients resulted. One may naturally inquire what is the simplest result and 
whether there is anything, such as some yet unknown quantum numbers, behind this 
simplicity? These are the long standing open questions for the multiplicity separation 
of the CG coefficient. 
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The eigenfunction method is a ‘packaged method’, i.e. it is impossible to get a 
particular CG coefficient without producing the whole CG matrix. Therefore the limita- 
tion of the method is decided by the size of the CG matrix versus the size of the RAM 

(randomly accessible memory) of the computer. Another limitation is that for higher 
multiplicity, the symmetry imposition becomes more and more involved. Without 
proper symmetry imposition, we cannot convert the coefficient into a simple square 
root form. However, if we are content with the decimal form of the coefficients, then 
we are free from this limitation. 

The U( m n )  1 U( m )  x U( n )  f,-particle CFP for an f (=fi +f,)-particle system can 
be calculated from the transformation coefficients of S(f), which are tabulated by 
Chen er a1 (1983b), and the CG coefficients of S(f,), S ( f 2 )  and S(f) (see equation (17) 
and also examples in Chen er a1 (1983~)).  It was shown in Chen er a1 1984b that under 
the phase convention of 0 3, the U( mn) 2 U( m )  x U( n) CFP calculated from the permu- 
tation group CG coefficients is also the SU( mn)  1 SU( m )  x SU( n )  CFP. The SU( mn) 2 

SU( m )  x SU( n) one-particle CFP have been tabulated by Chen et a1 (1984b), while the 
two- and three-particle CFP will be published in the forthcoming papers. 

Let 1 Y > ,  W,) ( I  Y2* W,)) be the Yamanouchi basis v1mI(v2m2) of the permutation 
group S(f), as well as the IRB v l  W,( v2W2) of the unitary group SU( m )  (SU( n)) in the 
x(5) space, where YM, stands for the Young tableau and W, the component index for 
the irrep vi of the unitary group SU( m )  or SU( n). The SU( mn)  2 SU( m )  x SU( n )  IRB 

and the Yamanouchi basis of S(f) in the (x, 5 )  space can be constructed in terms of 
the permutation group CG coefficients (Chen et a1 1978) 

I y ; , p v ,  [;Gl,v2wz) = q v  2 Ct$T”y,m,l~>, W , ) I Y ~ ~  w,>, 
m1m2 

where q y  is a phase factor and can be chosen to be unit. Under this choice, the 
permutation group CG coefficient is identified to the indirect coupling coefficients for 
the SU( m n )  1 SU( m) x SU( n )  IRB, and the S(f) 2 S(fl) x S(f2) ISF to the SU(mn) 1 
SU(m) x S U ( n )  f2-particle CFP (Chen 1981). 
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